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Classes or labels are one type of informa-
tion we can extract from data sets. Clas-
sifying and labeling something not only 

gives us information on what it is but also provides 
knowledge about how it relates to other things we 
observe. Humans have evolved to be natural and 
accurate classifi ers, but our ability to categorize ob-
jects or create new categories is occasionally lim-
ited not by our ability to classify but by our ability 
to perceive the attributes and patterns needed to 
form these new classes. Critical classifi cation at-
tributes might be hidden within hundreds of other 
variables (as with biometrics). Classifi cation pat-
terns that are part of a time series could tax hu-
man memory limits (as with medical imaging). In 
addition, classifi cation problems might need to be 
solved very quickly or on very large data sets (as 
with Internet document sorting).

Classifi cation in machine learning tries to solve 
these problems by automating the classifi cation pro-
cess. The number of techniques and algorithms is 
vast and (aptly) can be classifi ed in many ways. All 
machine-learning classifi cation algorithms learn 
by example. They begin with a large set of observa-
tions belonging to one of at least two classes, with 
the goal of learning a way to distinguish the class 
in the current observations and future, unseen ob-
servations. Classic problems include automatically 
sorting science articles from different disciplines, 
determining whether x-rays contain images of 
tumors, and parsing sound recordings for words. 
Also, as the Web moves toward a semantic repre-
sentation, the need for machines to understand 
large volumes of information will require classifi -
cation algorithms with machine speed and human 
understanding.

We believe that a mixed-initiative approach 
combining human and machine reasoning can 
create such algorithms. Here, we show how 
we’ve used this approach to classify user interac-
tions with a software application for intelligence 
analysis into domain-specifi c analytic activities 

Domain experts can effectively guide the classifi ca-
tion of the activities by visualizing user activity as 
a two-dimensional space. This visual classifi cation 
method is presented as part of a four-phase analytic 
workfl ow model detection process.

Mixed-Initiative	Classifi	cation
Machine-learning tools have reached a level of 
maturity in which developers and users can use 
them without having to be experts in machine 
learning. Open source tools let users of all skill 
levels create Bayesian and neural networks with a 
visual drag-and-drop interface.

New ways of visualizing machine-learning clas-
sifi ers have allowed some human input into the 
classifi cation process itself. We want to develop 
creative visualizations that get these powerful 
tools into the hands of the domain experts who 
will be using these classifi ers. For example, if we 
aim to create a workfl ow model to use as an intel-
ligent calculus tutor, a calculus teacher would best 
understand how to deliver the material. So, the 
teacher, not the machine-learning programmer, 
should guide the workfl ow discovery.

Kayur Patel and his colleagues1 suggest that 
software developers applying stochastic machine 
learning have diffi culty

■ following these algorithms’ iterative nature,
■ understanding the model and how the input re-

lates to the results, and
■ evaluating the model’s performance.

Of these diffi culties, “understanding the model” is 
probably the most critical for domain experts such 
as our calculus teacher. Understanding the rela-
tion between the observations and the resulting 
classifi cation not only helps the expert build bet-
ter models but also creates an appropriate level of 
trust in the classifi cation, which is critical in any 
automated system. Furthermore, because many of 
these algorithms work on processed observations, 



	 IEEE	Computer	Graphics	and	Applications	 9

Patel and his colleagues suggest there be a way to 
reference back to the original raw data. For our 
domain expert, this would be putting that data in 
a visual context that’s easier to understand—that 
of the learning problem.

Human expert input into the machine-learning 
process has traditionally been limited to label-
ing data for supervised learning and setting prior 
probabilities in Bayesian networks. We propose an 
approach that integrates domain expert input into 
the process. This mixed-initiative guidance isn’t 
analogous to supervised learning. The question 
of supervision (see the “Machine Categorization” 
sidebar for details) refers to whether individual ob-
servations used for classification are labeled as be-
longing to a particular class. “Supervised” refers to 
an expert’s input before classification, whereas our 
approach allows expert input during classification. 
Figure 1 illustrates the involvement of the user—
the domain expert—and the machine-learning sys-
tem in the mixed-initiative classification process 
toward creating a workflow model.

Allowing human expert input by providing data 
visualization during machine learning will im-
prove the accuracy of the resulting classifications 
where possible. More important, it will increase 
result comprehensibility and trust.

Figure 2 shows our four-phase proposal for de-
tecting analytic workflows in free, unstructured 
analysis. Analytic workflow is the process of gain-
ing understanding from information that’s incom-
plete, noisy, and often intentionally misleading. 
Phase 3 involves our mixed-initiative clustering, 
which supplements the more traditional super-
vised and unsupervised data segmentation. Later, 
we show how to visualize our mixed-initiative 
classification as an initial part of creating complex 
cognitive workflow models.

Method
As the analytic software environment for our ex-
periment, we chose nSpace.2 nSpace is an inte-
grated cognitive workspace used in information 
analysis. It comprises

Machine categorization attempts to group 
observations into class sets on the basis 

of observation features or statistical similarity. 
Algorithms differ in the amount of prior informa-
tion that’s available about the classes.

Supervised algorithms, such as neural networks 
(NNs), require that the training observations are 
prelabeled according to the class to which they 
belong. The prelabeling gives these algorithms a 
way to test their guesses against the “true” class 
for that observation. For example, an NN could 
be given a list of images containing handwritten 
letters along with the actual letter’s labels. The NN 

will learn to associate the pictures with the actual 
letter (class) and apply this learning to new im-
ages that haven’t been labeled.

Unsupervised algorithms, such as k-means 
clustering, don’t have labeled observations and 
must rely on grouping similar observations on 
the basis of some similarity metric. For example, 
given the same images as the NN, a success-
ful unsupervised algorithm would place similar 
images in 26 different bins but wouldn’t know 
what these bins meant.

Semisupervised algorithms try to work with only 
some of their observations labeled.

Machine Categorization
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Figure	1.	Expert-guided	clustering.	First,	the	user	records	sensor	data.	A	domain	expert	then	uses	a	visual	
interface	to	guide	a	machine-learning	algorithm	through	a	classification	process	to	create	a	workflow	model.
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 ■ TRIST (The Rapid Information Scanning Tool), 
for information triage;

 ■ Sandbox, for evidence marshaling and visual 
sense-making;

 ■ Viewer, for information and entity extraction; 
and

 ■ Projects, for project planning and collaboration.

These tools complement each other to support a 
full set of information analysis tasks.

Figure 3 illustrates the nSpace suite of tools and 
how a workflow could span across them. A user 
can organize a project in Projects and then query 
information in TRIST, which presents the relevant 
documents and entities within them. The user can 
view selected documents in Viewer and extract 
snippets and entities from both the Viewer and 
TRIST to analyze in Sandbox.

Data Collection
We chose nSpace because it supports a wide va-
riety of analytic workflows.2 A data-collection 
service can also use TRIST’s Web-based architec-
ture to collect observational information. nSpace 
is equipped to detect analytic log events (ALEs)—
high-level sensors used to describe events such 
as modifying evidence and making claims. These 
ALEs, along with application-specific information, 
captured analyst behavior during a two-hour task 
in the nSpace environment. We used these ALEs to 
discover analytic activities and then our workflow 
models.

Six participants performed an analysis on the 
trade relationship between two countries. We in-
tentionally left the task open-ended to allow for 
more open-ended workflows from the participants. 
All participants were students who had completed 
at least one year of a specialty program in incisive 
analysis. We gave them a two-hour tutorial on nSpace 
and instructed them to use whatever analytic tech-
niques and workflows they deemed appropriate for 
the task.

At five-minute intervals during the experiment, 
the software prompted participants to enter their 
current analytic activity. The software presented 
the options from a hierarchy created for this ex-
periment. The hierarchy had seven top-level cat-
egories: Plan, Search, Examine, Marshal, Reason, 
Collaborate, and Report. The “Analytic-Events Hi-
erarchy” sidebar lists all the activities.

If the hierarchy didn’t include the participants’ 
current activity, they could enter their own de-
scriptors. These entries served as “ground truth” 
labels for the corresponding sensor data used dur-
ing clustering.
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Figure	2.	A	four-phase	process	for	workflow	detection.	Domain	experts	
in	analytic	workflow	guide	machine-learning	algorithms	to	create	more	
intuitive	workflows.	For	details	on	machine	classification	and	Sammon’s	
projection,	see	the	related	sidebars.

To get human input into our mixed-initiative clustering, our 
high-dimensional clustering data must be transformed into 

something people can read. Sammon’s projection reduces the 
data’s dimensionality while maintaining the relative interobserva-
tion distance. It also reduces this distance by minimizing Sammon’s 
stress between observations. Sammon’s stress is defined as
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where dij is the distance between the ith and jth points in the 
original high-dimensional space and dij

*  is the interpoint distance 
in the 2D space. We used the Euclidean distance between points 
for our tests, although other distance measures are possible. Error 
was reduced at each iteration through standard gradient descent 
of Sammon’s stress.
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Mixed-Initiative Clustering
We preprocessed the data from the experiment 
to achieve the input requirements for Sammon’s 

projection3 (see the related sidebar) and mixed-
initiative clustering. This involved first normal-
izing the data from each sensor according to the 

(a)

(d)

(b)

(c)

Figure	3.	Participants	used	nSpace,	a	Web-based	analytic	environment,	to	complete	their	task.	nSpace	is	a	
system	of	systems	consisting	of	(a)	Projects,	for	project	planning;	(b)	TRIST	(The	Rapid	Information	Scanning	
Tool),	for	information	triage;	(c)	Viewer,	for	information	and	entity	extraction;	and	(d)	Sandbox,	for	analytic	
sense-making.	They	combine	to	support	complete	analytic	workflows,	and	information	is	easily	transferred	
between	them.

We presented this hierarchy to 
participants to extract ground 

truth during the experiment. It also 
served as labels during the mixed- 
initiative clustering and will become  
hidden states in phase four of dynamic 
Bayesian networks.
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range observed across all participants. This project’s 
eventual goal is to extract workflow patterns that fit 
across all analysts. So, normalization over the com-
plete, observed range is required for comparison.

To ensure that no two observations were identical, 
we then used recursive randomization to slightly 
perturb observations within a subject containing 
identical sensor values. Because “sammonizing” is 
based on the interobservation distance, the data 
must have no zero distances. Duplicate removal or 
various windowing techniques are possible at this 
stage; we’re considering them for future research 
when more data is available.

We designed the visualizations and interactions 
in our mixed-initiative interface to make activity 

patterns visible to the domain expert and to allow 
exploration and marking of those patterns. The 
expert first sees any apparent clusters after Sam-
mon’s projection, along with the ground-truth 
labels the user provides in Sandbox. For our pur-
poses, partial labeling (see the last paragraph of 
the “Machine Categorization” sidebar) of the data 
using ground-truth labels not only is less work 
than fully labeled data but also makes for a cleaner 
interface. We do, however, run the risk that a key 
cluster won’t be labeled; however, other explora-
tion tools will let the expert make a reasonable 
guess at its activity label.

Unlike many AI approaches that act like au-
tomated processes, our guided clustering allows 
domain expert input throughout the process. Ex-
perts can specify the number of clusters and how 
many training iterations they require. They can 
set the initial center position of all clusters and 
choose the most appropriate label. Data visual-
ization in the Sammon-projected space lets the 
expert gain enough understanding of the data to 
provide these inputs. Setting the initial activity 
cluster centroid position to an intuitive location 
will likely improve performance over standard k-
means clustering, which uses random locations. 
Our algorithm then incorporates the expert’s 
suggestions for cluster centroid parameters with 
the k-means’ suggestions for cluster centroids to 
combine both expert intuition and statistical ac-

curacy. Experts can also override the k-means in-
put for a single cluster centroid by using the Force 
Centroid option or for all centroids by disabling 
k-means completely.

Visualization of activity clusters over time 
is critical for this process because the observa-
tions are time-based. Although the real temporal 
modeling occurs after these activity clusters are 
formed (see phase 4 in Figure 2), letting our ex-
perts view observations over time will provide ex-
tra information for the guided clustering (phase 
3). For example, by watching a user’s data move 
back and forth over time between two obvious 
activity clusters, an expert can use ground-truth 
labels in one of those clusters to infer the second 
cluster’s label. If a user is transitioning between 
“Create Categories” and an unknown cluster in 
Sandbox, the expert might label the second clus-
ter “Categorize.”

Our visualizations also make feature extrac-
tion easier. With some algorithms, it’s required 
or beneficial to restrict the number of features 
(our ALE sensors in this case) that each observa-
tion uses, to reduce the work of clustering. Our 
interface can provide feedback on which features 
were most important in determining cluster as-
signment. Although our software saves dozens 
of features as ALE sensors during each observa-
tion, they won’t all be important during all ac-
tivities. By providing the statistical importance 
of “importing evidence” to marshaling activities, 
experts can use this information, in addition to 
their own intuition, during workflow creation 
(phase 4 in Figure 2) to reduce observation com-
plexity. Finally, because the software saves ob-
servation features as sensor log events and their 
times, experts can return to the original software 
package to see all observations in context with 
the user’s task. Patel and his colleagues suggest 
that this ability is critical to understanding the 
final model.1

Results
Figure 4 displays one participant’s sandbox (see 
Figure 4a) and cluster data (see Figure 4b). Ex-
perts can control the number and the clusters’ 
initial centroids, forgoing the need for an algo-
rithm solution to these problems. By allowing 
the analytic expert choice over centroid initial-
ization, our clustering algorithms should reach 
an intuitive solution in less time than random 
initialization.

To produce the clustering’s results, we use a 
hybrid approach that averages a final cluster cen-
troid, which is a weighted average of

Mixed-initiative machine-learning 
techniques enable the production of 

machine-learned models that end users  
can trust and find useful.
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 ■ the expert’s centroid (w = 0.4),
 ■ a k-means centroid (w = 0.5), and
 ■ a centroid based on the locations of any ground 
truths (w = 0.1).

The weight accorded to each of these inputs is 
open to future research, which experts could ad-
just in future versions. We set the ground-truth 
weight low in this trial owing to our observation 
that experts tend to rely heavily on these points in 
setting their own centroids, and a higher weight 
would overemphasize this data.

As Figure 4 shows, the initial results were 
promising. Participant MH1’s observations in 
Sandbox would typically present difficulty for 
both human and automatic clustering. Correlate 
and Categorize are fairly clear clusters, and our 
ground-truth entries provide reasonable activity 
labels. However, the collection of Plan ground-
truth entries in the middle top would provide dif-
ficulties for both machine and human solutions 
on their own. A machine solution might not pick 
this up as an activity cluster because it’s quite 
close to other observations on either side of it. A 
human would spot these labels but would have 
difficulty finding the boundary between this ac-
tivity group and others.

Our approach lets the domain expert signal 
that an activity cluster is centered here, and the 
k-means component will easily set the boundar-
ies on the basis of the observation distance. Our 
human domain expert was also able to change an 
activity label that seemed out of place. Partici-
pant MH1 used the Plan/Group Tasks label in this 
sandbox, even though we intended this to be for 
planning and grouping daily tasks. On the basis 
of the current context, our expert decided that the 
participant meant the “task of grouping evidence” 
and relabeled the activity cluster as Merge. A pure 
k-means algorithm can estimate cluster labels on 
the basis of choosing the most common ground-
truth label for that cluster, or perhaps the label 
closest to the cluster centroid. The contextual 
judgments shown here, however, are possible only 
in a mixed-initiative algorithm.

Although we haven’t yet fully automated cre-
ation of Bayesian workflow models using these 
activities, the “Marshaling by Hypothesis” sidebar 
demonstrates this research’s potential. A domain 
expert created a workflow for marshaling by hy-
pothesis, which demonstrates the workflow process 
by which an analyst extracts useful information, 
given a question or hypothesis. Although the fit 
isn’t yet perfect, the workflow we created using our 
mixed-initiative categories is much closer to the 

domain expert’s than the one we created using the 
ground-truth categories alone.

Mixed-initiative machine-learning techniques 
enable the production of machine-learned 

models that end users can trust and find useful. 
Traditional black-box solutions might have been 
accurate but often couldn’t explain why a rec-
ommended solution was correct. Mixed-initiative 
solutions increase transparency and understand-
ing by

 ■ utilizing accurate visualizations of patterns to 
allow for human expert input to the process,

 ■ providing contextual knowledge that the AI 
might not be aware of,

(a)

(b)

Figure	4.	Example	of	(a)	participant	MH1’s	work	and	(b)	the	resulting	
clusters	we	created	via	visual	clustering.	To	achieve	these	results,	the	
domain	expert	contributed	the	number	of	clusters,	the	initial	centroid	
locations,	and	iterative	adjustments	to	the	k-means	algorithm.
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 ■ providing human-understandable descriptions 
and labels of machine-produced patterns and 
clusters, and

 ■ keeping the expert modeler’s intuition in the 
loop during pattern detection.

Future research will include training separate 
activity models, likely naïve Bayesian networks, 
using the clusters we discovered in the mixed-
initiative process. We’ll then use each model as 
part of an ensemble method to detect activity 
states in a dynamic Bayesian network (DBN) of the 
workflow process itself. Because we want to create 
clear, accurate workflow models, we’ll measure both 
clarity and accuracy to determine DBN suitability 
and to check for any inherent trade-off in these 
two measures. Initial workflows created using this 
technique (see the “Marshaling by Hypothesis” 
sidebar) demonstrate potential for our mixed-
initiative process, although a full qualitative anal-
ysis will require more data.

Although our clustering process is guided and 
completely interactive, our Sammon projection 
isn’t yet. Owing to our data’s high-dimensional 
nature, it’s difficult to begin expert visualizations 
until the projection is complete. We plan to look 
into this to expand expert input into clustering. 
Finally, in our experiments, we played the part of 
the domain experts. We plan to conduct usabil-
ity testing on the interface to make the process 
intuitive to domain experts without a machine-
learning background. 
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We had a human expert specify a workflow for marshaling by 
hypothesis (see Figure A1). This iterative, nonlinear workflow 

is modeled as a dynamic Bayesian network and required knowl-
edge of Bayesian probability and visual analytics. We would like 
our mixed-initiative process (see the main article) to learn this work-
flow automatically from observations. Figure A2 shows a machine-
detected workflow we created using only ground-truth labels from 
the experiment described in the main article; Figure A3 includes 
extra information learned from mixed-initiative activities.

Marshaling by Hypothesis
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Figure	A.	Workflows	for	marshaling	by	hypothesis.	(1)	The	target	workflow,	

which	was	created	by	a	human	expert,	(2)	a	machine-detected	workflow	

based	on	ground	truth	only,	and	(3)	a	machine-detected	workflow	based	on	

ground	truth	plus	mixed-initiative	activities.	By	including	mixed-initiative	

activities,	we	can	discover	workflows	that	match	the	target	workflow	more	

closely	than	ground-truth	activities	alone.


