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Maintaining situational awareness of a dynamic global computer network that consists of ten to hundreds of 
thousands of computers is a complex task for cyber administrators and operators looking to understand, 
plan and conduct operations in real time. Currently, cyber specialists must manually navigate complex 
networks by continuous cycles of overviews, drilldowns and manually mapping network incidents to 
mission impact. This is inefficient as manually maneuvering of network data is laborious, induces cognitive 
overload, and is prone to errors caused by distractive information resulting in important information and 
impacts not being seen. We are investigating “FocalPoint” an adaptive level of detail (LOD) recommender 
system tailored for hierarchical network information structures. FocalPoint reasons about contextual 
information associated with the network, user task, and user cognitive load to tune the presentation of 
network visualization displays to improve user performance in perception, comprehension and projection of 
current situational awareness.  Our system is applied to two complex information constructs important to 
dynamic cyber network operations: network maps and attack graphs. The key innovations include: (a) 
context-aware automatic tailoring of complex network views, (b) multi-resolution hierarchical graph 
aggregation, (c) incorporation of new computational models for adaptive-decision making on user tasks, 
cost/benefit utility and human situation awareness, and (d) user interaction techniques to integrate 
recommendations into the network viewing system. Our aim is to have a direct impact on planning and 
operations management for complex networks by; overcoming information overload, preventing tunnel 
vision, reducing cognitive load, and increasing time available to focus on optimum level of details of the 
global network space and missions. 
 

INTRODUCTION 
 

Cyber attacks against network systems are becoming 
increasingly prevalent. Businesses and government agencies 
alike place great value on increasing and maintaining the 
security of their networks. The primary approach used to 
achieve this goal is human auditing and monitoring of network 
system displays. Today's state of the art network analysis and 
monitoring tools provide largely manual interactions, with 
limited ability to effectively navigate through complex 
networks at varying resolutions and fail to account for 
operational goals or business processes and their inherent 
uncertainty (Jones & Horowitz, 2011). Efficiency and 
effectiveness is only achieved with highly trained experts in 
cyber security and network administration.  This approach 
does not scale to the number of operations, operational 
complexity, or rapid response required for the dynamic nature 
of cyber space. User performance in perception, 
comprehension, and projection of the cyber network situation 
suffers tremendously under these conditions, and must be 
improved to ensure effective system monitoring and, 
consequently, heightened cyber security.  

In order to take effective actions and decisions in cyber 
space an operator needs to have a clear view of the current 
state of the network, potential attack paths, vulnerabilities, 
assessment of risks and mitigation strategies without cognitive 
overload.  

Research on cyber situation awareness (Cyber SA) is 
focused on analyzing large volumes of data captured from 
complex cyber networks such as Best and Cox (2015) and 
mapping out threats from vulnerabilities on the overall 

network space using network maps and attack graphs in Cheng 
(2015).  Visualization methods have been suggested to better 
understand results generated from monitoring and analysis 
systems (Angelini, Prigent & Santucci, 2015). However, 
visualization systems have several challenges as noted in Fink, 
North,  Endert and Ros (2009) that these systems are not able 
to handle complex volumes of cyber data, do not allow cross 
correlation, perform poorly when trying to reason on context 
changes and lack the ability to manage multiple informational 
displays which leads to cognitive overload for users.   

To increase the effectiveness of information visualization, 
Carenini, Conati and Hoque (2013) indicated there is a need to 
pay attention to the needs and abilities of the user with the 
concept of adaptability. Adaptive systems have been utilized 
on web interfaces, human learning tools and desktop 
assistance where systems learn about users then create 
adaptive models that generate user tailored recommendations 
(Jameson, 2008). However, when dealing with a dynamic 
cyber space where uncertainty is hard to detect and quantify, 
deciding what information is most relevant to the user is not a 
trivial exercise. Adaptive level of detail systems are needed to 
improve user performance when monitoring complex 
networks thus enhance decision-making and allow focus on 
critical issues and understand impacts that would be 
impossible with existing systems.  
  To address these challenges we are investigating 
“FocalPoint”, a real-time adaptive system for determining 
appropriate LOD views tailored for hierarchical network 
information structures. FocalPoint reasons about contextual 
information associated with the network, user task, and user 
cognitive load to tune the presentation of network 
visualization displays to improve user performance in 



perception, comprehension and projection of current cyber 
situational awareness.   
 The rest of this paper presents related work, followed by a 
technical objective of FocalPoint, and finally some concluding 
remarks. 

RELATED WORK 
 

Our work draws on research from various fields: cyber 
situation awareness, adaptive systems, human computer 
interfaces, user modeling and adaptive visualization.  The 
need to understand complex networks through Cyber SA has 
been studied extensively, in particular on the need to 
understand large amounts of data from network flows, detect 
anomalies and infer interesting patterns (Best & Cox, 2015). A 
comprehensive review of Cyber SA is detailed in Franke and 
Brynielsson (2014).  

There are many challenges as noted in Best, Endert and 
Kidwell (2014) when trying to provide situation awareness to 
cyber analysts; big data, heterogeneous information sources, 
network linkage, data quality, cyber space threat progression, 
and balancing risk and reward. Approaches for handling large 
amount of data look to build data intensive architectures with 
visualization capability as described in Best and Cox (2015) 
where a combination of storage and statistical analysis for 
network behavior characterization is done, others use moving 
target defense as outlined in Fink et al. (2014) to understand 
CPU utilization and network bandwidth, while use of packet 
level data for modelling network behaviors is proposed in 
Pike, Scherrer and Zabriskie (2011). 

Another approach aimed at providing Cyber SA on 
complex computer networks is the creation of attack graphs 
which are used to formulate potential paths an attacker might 
exploit to compromise a system (Homer, Varikuti, Ou & 
McQueen, 2008). Various techniques have been utilized from 
machine learning and data mining to represent, generate and 
understand interesting behaviors among nodes with attack 
graphs; probabilistic approaches (Noel, 2004; Wang, 2010), 
Neural Networks (Kotenko & Stepashkin, 2006), Stochastic 
and spatiotemporal methods (Abraham, 2015; Chen, 2015). A 
comprehensive review on attack graphs is presented in 
Shandilya, Simmmons and Shiva (2014).  

The number of potential attack paths generated grows 
exponentially even on a network with a small amount of 
nodes. This becomes a difficult challenge when trying to 
analyze and understand any relationships among the different 
nodes. Visualization is suggested in Noel and Jajodia (2004) 
as a way to show the attack graph relationships to a user. 
However, current visualization  systems are not able to scale 
to large networks  resulting in cognitive overload on users thus 
ineffecive to providing Cyber SA. To overcome this, adaptive 
systems can be built to fit users specific knowledge, 
background and objective (Fischer, 2001). 

Studies on adaptive systems present varying techniques 
looking to improve human computer collaboration (Fischer, 
2001). These systems are able to adapt their behaviors based 
on user interaction, tasks and changes on context and the 
environment. Several researchers have looked at how such 
adaptive systems can be modeled such that human-computer 

interaction is integrated seamlessly, bayesian networks to infer 
user focus (Horvitz, 1999; Bencomo, 2013), adaptation by 
content, presentation and navigation in Zarikas (2007), and 
using adaptive interfaces to adapt user behavior, 
recommendations and smart menus in Jameson (2008). Others 
use taxonomies to identify adaptation levels and their triggers 
such as Feigh, Dorneich and Hayes (2012), agent-based 
simulations using weights to evaluate tasks and goals for 
adaptation in Topcu (2014), models to automate user tasks 
with minimal interaction between human and machine in Soh, 
Sanner and Jamieson (2015), and ontology based concept 
trees, hierarchies to link concepts and functions then reasoning 
on possible adaptation states in Vassev and Hinchey (2015).  

Common understanding among researchers is that systems 
can change and reorganize their components to adapt 
themselves to the system and user context. The challenges lies 
on the ability to accurately perceive and interpret users current 
cognitive state, integrating state of the environment, system, 
user task and predict users current needs (Feigh et al., 2012). 

Adaptive visualization research looks to enhance 
visualization thus reducing information overload (Nazemi, 
Stab & Kuijper, 2011). Techniques applied includes content 
delivery adaptation using parameterization, cache, and 
network neighborhoods detailed in Papadakis, Zahariadis and 
Nikolaouet (2015), fuzzy logic to infer context, incoming data, 
human concepts and real world situations in Haghighi et al. 
(2010), probabilistic approaches to identify user anomalies, 
similarities and deviation from norm in Nazemi et al. (2014) 
and inclusion of human attributes in Steichen (2013). 
Ontologies have been used to depict visualization paradigms 
as described in Ryabinin and Chuprin (2015). 

In addition to existing challenges on systems that try to use 
visualization to provide situation awareness in cyber space 
such as cognitive overload, adaptive visualization systems are 
faced with several problems; ability to appropriately adapt on 
details, changing evolving knowledge context allowing user to 
modify or customize thus enhance visualization. Furthermore, 
in an attempt to be dynamic, the systems lack contextual 
knowledge of the visualization paradigm and effective 
methods to address changing requirements and user interaction 
with the system.  

FOCALPOINT TECHNICAL OBJECTIVE 
 

Providing situation awareness on large and complex cyber 
networks is a research area studied extensively in statistical 
analysis and information visualization (Best & Cox, 2015). 
However, the amount of information generated that a human 
can synthesis and manage effectively becomes a huge 
challenge (Fink et al., 2009). Novel approaches to understand 
the contextual information about the environment, the user and 
tasks/missions, and accurately infer users viewing intention is 
needed to provide effective situation awareness (Nazemi et al., 
2011).  

To address these challenges, our research on FocalPoint 
investigates the integration of; cyber situation awareness, 
human computer interfaces, user modeling and context-aware 
adaptive visualization to develop an adaptive system for 
recommending LOD views of large-scale and dynamic 



network environments leading to enhanced decision making in 
cyber space. To the best of our knowledge, no system exists 
addressing these research areas. 

Using data captured from complex cyber networks 
representing hundreds to tens of thousands of nodes, 
FocalPoint reasons about contextual information associated 
with the network, user task, and user cognitive load to tune the 
presentation of network visualization displays to improve user 
performance in perception, comprehension and projection of 
current situational awareness. 

FocalPoint is applied to two complex information 
constructs related to cyber operations: network maps and 
attack graphs. Adaptive LOD recommendation is used to tailor 
cyber views to summarize normative aspects of the network 
and focus attention on abnormal activity, prioritizing and 
linking to potential risks.  

FocalPoint provides:  
(a) Context-aware automatic tailoring of cyber network views 
by utilizing knowledge bases of, networks, tasks, assets, health 
and status information to increase situational awareness in 
cyber space.  
(b) Multi-resolution hierarchical graph aggregation of network 
maps to present heterogeneous level of detail that varies with 
relevance to operator task and system state. Automatic link 
filtering allowing users to focus on critical tasks and works 
with larger networks.  
(c) Invention of new methods for usable adaptations thereby 
mitigating adaptive usability issues such as balancing 
unsolicited automation that disrupt user workflow vs. 
recommending adaptations in context using previews. 

Automatic Context Reasoning 
 

Inclusion of automatic context reasoning into information 
visualization systems has been identified as a Grand-
Challenge in Thomas and Cook (2005). FocalPoint is looking 
to addresses this by providing context aware reasoning 
services that adapt views of key elements in cyberspace, 
including node-link visualizations of network maps, and attack 
graphs. This is done by integration of advanced visualization 
and adaptive user interfaces similar to Nazemi, et al. (2011) 
combined with machine learning principles for network 
reasoning in Jensen and Nielsen (2007) and context-aware 
computational intelligence techniques detailed in Abbas, 
Zhang and Khan (2015). 

Proactive Decision Support 
 

A challenge with monitoring and decision-making in 
complex dynamic environments is getting the “right 
information” at the “right time”. To address this challenge, a 
system needs to be able to determine information relevance, 
overcome operator’s cognitive overload, prevent tunnel vision 
and adapt visual displays of network assets accordingly thus 
provide proactive decision support (PDS). FocalPoint aims to 
address PDS by; (a) increasing scale, scope and mission plans 
on systems that are managed and understood by human 
operators, (b) overcoming information overload hence quickly 

make sense of highly complex networks and vulnerabilities by 
seeing critical structures and the most important information,  
(c) preventing tunnel vision where the operator’s attention 
resources become mis-engaged with lower priority detail and 
(d) reducing the cognitive load required of planners and 
operators, lowering fatigue and increasing awareness levels.  

Adaptive Level of Detail Reasoning Service  
 

FocalPoint provides automatic and context-aware 
adaptation of the LOD to tailor cyber views dynamically. We 
use an attack graph-based knowledge representation to 
represent all potential attack paths between nodes and provide 
visual representation of the attack process (Swiler, 2001; 
Sheyner, 2002; Noel, 2004). The representation can be used 
offensively or defensively to understand the relationship 
between vulnerabilities and threats (Barik, 2011; Wang, 
2006). Attack graphs are augmented with attributes from 
network maps to represent device and network attributes, 
health and status information such as bandwidth, utilization 
and latency. Reasoning services are integrated to infer where 
uncertainty or risk is high and draw attention to these areas. 
User and system activity logging together with user models 
infers the current user task as it relates to view requirements, 
represents the user operational role, and estimates user 
cognitive load. Together these models provide machine 
decision-making on when to tailor or recommend views, 
presentation changes and the level of detail most effective to 
support the user. 

Adaptive Display of Network Details 
 

To understand network connectivity among related nodes, 
FocalPoint aggregates exploits shared among these nodes by 
adopting monotonicity principles in Noel and Jajodia (2004) 
and allowing the simplification of views by removing steps 
determined to be unnecessary to understand attack goals as 
noted in Homer, et al. (2008). With this, the user can focus 
efficiently on exactly the information they require. In addition, 
FocalPoint performs level of detail adjustments automatically 
as the user’s task and cyber situation context changes.  

Our focus on adaptive display of network details is on two 
user-system interactions; (1) User requests for information, the 
system retrieves the requested information and tailors the 
associated level of detail, e.g. query for sub-graph, task plan, 
navigating network map or attack graph.  (2) The display 
system receives new information from sensors or analytic 
services, and the current display is updated, e.g. updates to 
network properties such as latency, utilization, or connectivity. 

Automation and Recommendation methods for Usable 
Adaptations 
 

The phenomenon of information overload is noted as a 
huge challenge by many researchers who are trying to reduce 
cognitive overload, interaction cost and collaborative  viewing 
(Nazemi, et al., 2011). To address this problem, we are 
investigating new methods to communicate to the user on 



adaptive LOD changes. In particular we are looking at the 
ability to determine triggers, when to make recommendations 
for usable adaptations and when to automate thus enhance user 
computer interactions and reduce cognitive overload. We are 
utilizing similar principles in (Nazemi, 2011, 2014; Zorzal,  
2014) to derive user interactions and behaviors for appropriate 
automation and recommendations.  

FocalPoint Architecture 
 

Input to FocalPoint is network maps, attack graphs, 
streams of sensor alerts, and user activity events. The context-
aware reasoning component performs high-level reasoning 
over the cyber space and current user task. The decision 
component receives information from the reasoner and makes 
adaptation decisions that signal the adaptation execution 
modules to tailor the level of detail. Execution modules 
receive adaptation parameters from the decision component 
and using state information from the reasoner, adapt the level 
of detail accordingly. The gray components facilitate 
integration to other systems. 

Activity Monitor. This component gathers information on 
user and system activity. An event logging system similar to 
tacit collaboration and recommendation services for 
intelligence analysts is tailored for cyber planner and operator 
activities (Schroh et al, 2009). Events captured are high-level 
indicators of activity and are used by user modeling services 
to build models of individual context. Interaction with 
operations and elements in the network or attack graphs signal 
interest in investigation or monitoring user tasks. Events 
provide evidence to the user and task reasoning component.  

User and Task Reasoning. Utilizing probabilistic Hidden 
Markov Models (HMM) principles similar to work in 
MacInnes et al. (2008), temporal context models infers the 
task or subtask the user is currently engaged in given a 
sequence of activity events received from the user activity 
sensors. Inferred user tasks are part of the system context 
necessary to effectively provide context-aware adaptive user 
interfaces. 

Context Reasoning. Gathering relevant information on the 
state of the environment, the user and tasks/missions, this 
component evaluates any changes to context using 
computational intelligence techniques similar to works in  
(Nazemi, 2011; Zhang, 2015) and network reasoning in Jensen 
and Nielsen (2007) to derive new facts from existing context. 
The resulting contextual information is used to increase visual 
prominence of potential attack path threats or bring 
information to the forefront when mission risk is increased. 
This information highlights key network components where 
uncertainty and risk is greater, and provide the relevant details.  

Adaptive Decision. Influence diagrams encode adaptation 
decisions as detailed in Zarikas (2007). These are decision 
theoretic models that utilize graphical probabilistic models, 
augmented with decision and utility nodes in Jensen and 
Nielsen (2007). Our utility models provide a trade off view on 
interaction cost/benefit vs. user cognitive load to guide 
adaptive decision-making. FocalPoint predicts the 
consequences of possible system actions using prior empirical 
learning, and evaluates the possible actions, taking into 

account situation-dependent priorities and the tradeoffs 
between the consequences (Jameson, 2001). Our decision 
model determines the value of new information vs. the 
cognitive load cost of the operator and whether it warrants an 
adaptation of visual display. 

LOD Adaptation Modules. These modules tailor level of 
details presented in cyber visualizations to satisfy adaptation 
decisions. Parameters that govern the adaptation module 
control how to perform the adaptation, such as level of detail 
to present, and modality for the adaptation (recommend or 
automate). Each module is associated with one or more 
domain objects such as network maps or attack graphs. 
Adaptation instructions convey the necessary information for 
the view display to alter the presentation of its information. 

Adaptive Display Details for Attack Graphs. A sample of 
an attack graph is shown in Figure 1, this depicts a network 
that contains several subnets (clusters), 3 internal and 3 
external (machines as nodes, links as edges). 2 of the external 
subnets represent potential hostile regions (attackers) and there 
are some machines in these hostile regions sending 
communication to several machines in the internal subnets. 
FocalPoint allows one to clearly see the various paths the 
attackers can take to compromise the internal subnets, 
probabilistic weights on paths are used to highlight risk. 

 
Figure 1: Attack Graph. View 1 represents the various paths that 

the attackers (source nodes) might take to compromise several machines if 
they have access to the target node. FocalPoint aggregates exploits shared 
among the different machines and as shown in view 2 machines with similar 
exploits are grouped together thus allowing a user to focus on important 
information. View 2 also includes attributes necessary to assess severity. 

CONCLUSION 
 

Our research on FocalPoint presents an innovative 
approach to understanding complex space. We integrate 
techniques drawn on research from various fields: cyber 
situation awareness, adaptive systems, human computer 
interfaces, user modelling and adaptive visualization.  

Using data captured from complex cyber systems, 
FocalPoint reasons about contextual information associated 
with the network, user task, and user cognitive load to tune the 
presentation of network visualization displays to improve user 
performance in perception, comprehension and projection of 
current situational awareness. We anticipate that with 
proactive decision-making and context aware reasoning, user, 

 



tasks and system cognitive states are appropriately managed 
leading to adaptive LOD views that are effective.  

In future work we plan to conduct component level tests 
and user experimentation to measure the effectiveness of 
FocalPoint using representative Cyber SA scenarios and 
compare against a baseline. 
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