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ABSTRACT 

This poster paper examines current methods of visualizing 
causality and their limitations.  Causality is important for 
providing explanations especially when using computational 
models to understand complex systems structure and behavior, 
and what happens when change occurs in the system.  There are 
many properties of causality that need to be considered and made 
visible, but current causality visualization methods are limited in 
expressions, scale, dimensionality and do not provide sufficient 
support for user tasks such as “what-if” and “how-to’ questions, or 
in supporting groups considering multiple scenarios.  There are 
many challenges to be discussed. 
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1 INTRODUCTION 

To encourage discussion, this poster paper examines current 
methods of visualizing causality and suggests areas to improve to 
work with richer representations of systems that include causality.   

There is increasing use of computational models to represent 
and understand the structural and dynamic properties of causality 
in complex systems.  Example modeling methods include 
Bayesian models of political influence, probabilistic graphical 
models [17], Petri net models of sequential processes, system-
dynamics models of infrastructure process flows, agent-based 
models of social behavior [16], statistical models (e.g. economics, 
biochemical reactions [5], correlation-based causality [20] and 
influence diagrams [1].  In these models, causality operates 
through modeled action and outcome relationships.  While there 
are a variety of computational methods, we can consider the 
common properties of causality with which visual expressions can 
establish a consistent way of working with causality. 

2 ABOUT CAUSALITY 

Causal relationships are important for providing an explanation to 
users of the reasons for predicted observations of changes and 
phenomena.  Causality is a way of understanding systems and 
sub-systems, how they operate dynamically, what their 
characteristics are, and which forces are responsible for changes. 
There is a large field of philosophy on causality including 
Aristotle and David Hume fundamentals, but from an engineering 
perspective, causality is a mechanism that connects system 
interactions with subsequent observations.  Pearl’s unifying theory 
of causality uses probabilistic structural causal models to answer 
questions about the direct and indirect effects of interventions 
[17].  In understanding the causal connection from action to 
effect, there is an important role for visualization. 

3 USER TASKS IN WORKING WITH CAUSALITY 

Decision-makers, planners and analysts need to first understand 
complex systems, including their structure and dynamics, then to  
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work with simulations of those systems to comprehend “what 
if”scenarios.  As part of sense-making, people ask “why?” 
questions to understand observed behavior.  Answers to “what if” 
questions can help decision-makers weigh the pros and cons of 
specific actions.  Intervention and counter-factual reasoning is 
supported via “if this were true” reasoning.  Finding answers 
requires tracing causality chains and characteristics as people 
examine what factors caused variables to exhibit specific 
behaviors.  Visualization is essential for answering all these 
questions, for tracing complex causality, and for illustrating 
characteristics of causality such as prioritized leverage points in 
the “causal landscape” [15]. 

Group participatory discourse and debate, while comparing 
options and building shared understanding, is part of the decision-
making process when developing a plan to intervene in a complex 
system [14].  Many diverse perspectives need to be shared to 
improve causal decision-making models, and to produce insights 
into predicted system dynamics.  Visualization has a role in 
supporting groups of people working with these models. 

4 PROPERTIES OF CAUSALITY TO VISUALIZE 

In working with models of systems, there are numerous 
properties of causality relevant for visualization.  The system 
description includes structure such as objects (i.e. entities with 
attributes and values), relationships to other objects, and causal 
links from object actions to effects (i.e. changes in structure or 
values).  The system description has scale.  It can be a small or 
large system, and there can be a simple or detailed description.  
Causal links in the systems have direction, strength and certainty 
[1][2].  Causality has agency (i.e. the entity performing an action) 
and the agency has characteristics (e.g. membership of a political, 
social or economic sub-system).  Causality also has both polarity 
(e.g. positive, negative influence), and valence (i.e. the influence 
supports or opposes the purpose of an intervention(s).  Causality 
also has characteristic patterns as shown in Figure 1 [7][10]. 

Causality can be deterministic, or probabilistic with varying 
levels of likelihood.  Probabilistic graphical models encode belief 
propagation.  Hard or soft evidence on states of variables, allows 
inference of current states, or reasoning about potential effects. 

Causality also occurs in a temporal context.  Events and 
behavior occur over time with delays, concurrency, non-linear 
behavior, variable time series, events that are episodes of behavior 
and change, etc.   

 

Amplification C increases the effect A -> B 

Damping  C decreases the effect A -> B 

Prevention  C blocks A -> B 

Mutual A -> B  and  B -> A 

Domino A -> B -> C -> D ... continues 

Cyclical A -> B -> C -> A ... repeats 

Feedback  A -> B -> A -> B ... repeats 

Figure 1: Patterns of causation can help interpret complex 

causality. 
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5 CURRENT CAUSALITY VISUALIZATIONS AND LIMITATIONS 

Causal relationships are typically represented using a directed 
acyclic graph (DAG), with labeled nodes linked by arrows 
representing simple if-then relationships.  For graph attributes, 
methods have not progressed much beyond combining directed 
arrows, color, transparency and size (width of edge, diameter of 
node).  See Figure 2.  Tapered directed edges have been found to 
perform better than arrows [11].  Evaluations have shown width is 
preferred over color for “strength”, and for certainty, using 
brightness and fuzziness showed higher accuracy and 
understandability than dashed lines [1][8].  Current work often 
uses datasets that are smaller (e.g. 20 to 400 nodes) [5], and the 
number of properties displayed are fewer.  High dimensional 
graph attributes (i.e. multiple node/edge properties) require 
multivariate graph visualization but higher dimensions are a 
representation challenge [9].  Additional attributes must be seen 
without increasing clutter. 

 

 
Fig. 2. Too simple causality [2]. 

 
Fig 3. Linked visible behaviours 

[13]. 
 

A recent causal graph reasoning tool, tightly integrated with 
conditional dependence methods, uses only limited color 
encodings.  Green/red arrows for edge polarity, and blue/yellow 
for node variable type (categorical, numerical).  Edge color 
transparency encodes amount of change exerted by the cause onto 
the effect.  A stronger effect is more visible. It remains a 
challenge to visualize additional attributes (e.g. test statistics), and 
to compare model scenarios and their attributes [20]. 

Representing complexity while also enabling people to see 
higher order patterns is a significant challenge.  Another recent 
tool, ReactionFlow, uses novel gradient-filled sets of arcs to show 
causal pathways and feedback loops [5].  Linked Visible 
Behaviors in Figure 3 shows non-linear linked time series 
variables with multiple scenario comparison but is limited in the 
number of variables concurrently displayed.  

Causality has been represented using animation and interaction 
[6].  Additional exploratory thinking has examined expressive 
animations for some causal characteristics listed in Figure 1 [22] 
but animation sequences have issues due to human 
attention/distraction and weak short term memory [Wickens 
2013].  Static methods provide better ability to reason with the 
information [23].  Static diagrams offer access at any time as the 
user builds their mental model of comprehension.  However, 
animations of continuously repeating loops show promise for 
encoding graph attributes [12].  Looping motion methods were 
found to be effective for highlighting long complex graph paths 
when tracing [21].  But in general, dynamic graphs (either 
animation or timeline-based) have not been investigated for use 
with causality, and scalability and working with high dimensional 
data remain a challenge [3].  

While there are a wide variety of graph layouts [19], not many 
beyond force-directed or hierarchical have been applied to 
causality.  Semantic anchoring layouts or user defined “semantic 
substrates”, which are efficient for scalability and understanding 
[18], have not been used for understanding and working with 
causality.  

6 CONCLUSION 

Current causality visualization methods are limited in expressions, 
scale, dimensionality and do not provide sufficient support for 
user tasks.  For example, visual support for discourse on causal 
alternatives and “what-if” questions remains lacking.  Efficient 
visibility into computational models and results is required for 
using causality models as a cognitive tool for thinking.  There are 
many challenges and opportunities to be discussed. 

Next steps include imagining concepts for expressive causality 
and developing prototypes to evaluate with representative users. 
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